Note that there are some explanatory texts on larger screens.

plurals
  1. POExtracting image region within boundary
    primarykey
    data
    text
    <p>I have to do a project using 2D CT images and segment liver and tumor in it using Matlab(only). Initially i have to segment liver region alone. I use region growing for liver segmentation. It gets seed point as input. </p> <p>The output is an image with a boundary for liver region. Now I need the region that is surrounded by the boundary alone. </p> <p>My program has a main program and a regionGrowing.m function. As I'm a new user am not allowed to post images. If you do need images I will mail you. Kindly help me.</p> <pre><code> % mainreg.m IR=imread('nfliver5.jpg'); figure, imshow(IR), hold all poly = regionGrowing(IR,[],15,1200); % click somewhere inside the liver plot(poly(:,1), poly(:,2), 'LineWidth', 2, 'Color', [1 1 1]) </code></pre> <hr> <pre><code>%regionGrowing.m function [P, J] = regionGrowing(cIM, initPos, thresVal, maxDist, tfMean, tfFillHoles, tfSimplify) % REGIONGROWING Region growing algorithm for 2D/3D grayscale images % % Syntax: % P = regionGrowing(); % P = regionGrowing(cIM); % P = regionGrowing(cIM, initPos) % P = regionGrowing(..., thresVal, maxDist, tfMean, tfFillHoles, tfSimpl) % [P, J] = regionGrowing(...); % % Inputs: % cIM: 2D/3D grayscale matrix {current image} % initPos: Coordinates for initial seed position {ginput position} % thresVal: Absolute threshold level to be included {5% of max-min} % maxDist: Maximum distance to the initial position in [px] {Inf} % tfMean: Updates the initial value to the region mean (slow) {false} % tfFillHoles: Fills enclosed holes in the binary mask {true} % tfSimplify: Reduces the number of vertices {true, if dpsimplify exists} % % Outputs: % P: VxN array (with V number of vertices, N number of dimensions) % P is the enclosing polygon for all associated pixel/voxel % J: Binary mask (with the same size as the input image) indicating % 1 (true) for associated pixel/voxel and 0 (false) for outside % % Examples: % % 2D Example % load example % figure, imshow(cIM, [0 1500]), hold all % poly = regionGrowing(cIM, [], 300); % click somewhere inside the lungs % plot(poly(:,1), poly(:,2), 'LineWidth', 2) % % % 3D Example % load mri % poly = regionGrowing(squeeze(D), [66,55,13], 60, Inf, [], true, false); % plot3(poly(:,1), poly(:,2), poly(:,3), 'x', 'LineWidth', 2) % % Requirements: % TheMathWorks Image Processing Toolbox for bwboundaries() and axes2pix() % Optional: Line Simplification by Wolfgang Schwanghart to reduce the % number of polygon vertices (see the MATLAB FileExchange) % % Remarks: % The queue is not preallocated and the region mean computation is slow. % I haven't implemented a preallocation nor a queue counter yet for the % sake of clarity, however this would be of course more efficient. % % Author: % Daniel Kellner, 2011, braggpeaks{}googlemail.com % History: v1.00: 2011/08/14 % error checking on input arguments if nargin &gt; 7 error('Wrong number of input arguments!') end if ~exist('cIM', 'var') himage = findobj('Type', 'image'); if isempty(himage) || length(himage) &gt; 1 error('Please define one of the current images!') end cIM = get(himage, 'CData'); end if ~exist('initPos', 'var') || isempty(initPos) himage = findobj('Type', 'image'); if isempty(himage) himage = imshow(cIM, []); end % graphical user input for the initial position p = ginput(1); % get the pixel position concerning to the current axes coordinates initPos(1) = round(axes2pix(size(cIM, 2), get(himage, 'XData'), p(2))); initPos(2) = round(axes2pix(size(cIM, 1), get(himage, 'YData'), p(1))); end if ~exist('thresVal', 'var') || isempty(thresVal) thresVal = double((max(cIM(:)) - min(cIM(:)))) * 0.05; end if ~exist('maxDist', 'var') || isempty(maxDist) maxDist = Inf; end if ~exist('tfMean', 'var') || isempty(tfMean) tfMean = false; end if ~exist('tfFillHoles', 'var') tfFillHoles = true; end if isequal(ndims(cIM), 2) initPos(3) = 1; elseif isequal(ndims(cIM),1) || ndims(cIM) &gt; 3 error('There are only 2D images and 3D image sets allowed!') end [nRow, nCol, nSli] = size(cIM); if initPos(1) &lt; 1 || initPos(2) &lt; 1 ||... initPos(1) &gt; nRow || initPos(2) &gt; nCol error('Initial position out of bounds, please try again!') end if thresVal &lt; 0 || maxDist &lt; 0 error('Threshold and maximum distance values must be positive!') end if ~isempty(which('dpsimplify.m')) if ~exist('tfSimplify', 'var') tfSimplify = true; end simplifyTolerance = 1; else tfSimplify = false; end % initial pixel value regVal = double(cIM(initPos(1), initPos(2), initPos(3))); % text output with initial parameters disp(['RegionGrowing Opening: Initial position (' num2str(initPos(1))... '|' num2str(initPos(2)) '|' num2str(initPos(3)) ') with '... num2str(regVal) ' as initial pixel value!']) % preallocate array J = false(nRow, nCol, nSli); % add the initial pixel to the queue queue = [initPos(1), initPos(2), initPos(3)]; %%% START OF REGION GROWING ALGORITHM while size(queue, 1) % the first queue position determines the new values xv = queue(1,1); yv = queue(1,2); zv = queue(1,3); % .. and delete the first queue position queue(1,:) = []; % check the neighbors for the current position for i = -1:1 for j = -1:1 for k = -1:1 if xv+i &gt; 0 &amp;&amp; xv+i &lt;= nRow &amp;&amp;... % within the x-bounds? yv+j &gt; 0 &amp;&amp; yv+j &lt;= nCol &amp;&amp;... % within the y-bounds? zv+k &gt; 0 &amp;&amp; zv+k &lt;= nSli &amp;&amp;... % within the z-bounds? any([i, j, k]) &amp;&amp;... % i/j/k of (0/0/0) is redundant! ~J(xv+i, yv+j, zv+k) &amp;&amp;... % pixelposition already set? sqrt( (xv+i-initPos(1))^2 +... (yv+j-initPos(2))^2 +... (zv+k-initPos(3))^2 ) &lt; maxDist &amp;&amp;... % within distance? cIM(xv+i, yv+j, zv+k) &lt;= (regVal + thresVal) &amp;&amp;...% within range cIM(xv+i, yv+j, zv+k) &gt;= (regVal - thresVal) % of the threshold? % current pixel is true, if all properties are fullfilled J(xv+i, yv+j, zv+k) = true; % add the current pixel to the computation queue (recursive) queue(end+1,:) = [xv+i, yv+j, zv+k]; if tfMean regVal = mean(mean(cIM(J &gt; 0))); % --&gt; slow! end end end end end end %%% END OF REGION GROWING ALGORITHM % loop through each slice, fill holes and extract the polygon vertices P = []; for cSli = 1:nSli if ~any(J(:,:,cSli)) continue end % use bwboundaries() to extract the enclosing polygon if tfFillHoles % fill the holes inside the mask J(:,:,cSli) = imfill(J(:,:,cSli), 'holes'); B = bwboundaries(J(:,:,cSli), 8, 'noholes'); else B = bwboundaries(J(:,:,cSli)); end newVertices = [B{1}(:,2), B{1}(:,1)]; % simplify the polygon via Line Simplification if tfSimplify newVertices = dpsimplify(newVertices, simplifyTolerance); end % number of new vertices to be added nNew = size(newVertices, 1); % append the new vertices to the existing polygon matrix if isequal(nSli, 1) % 2D P(end+1:end+nNew, :) = newVertices; else % 3D P(end+1:end+nNew, :) = [newVertices, repmat(cSli, nNew, 1)]; end end % text output with final number of vertices disp(['RegionGrowing Ending: Found ' num2str(length(find(J)))... ' pixels within the threshold range (' num2str(size(P, 1))... ' polygon vertices)!']) </code></pre>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload