Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>I don't know anything about the ols module you're using. But if you try the following with s<a href="http://statsmodels.sourceforge.net/" rel="nofollow">cikits.statsmodels</a>, it should work:</p> <pre><code>import numpy as np import scikits.statsmodels.api as sm a = np.array([[.001,.05,-.003,.014,.035,-.01,.032,-.0013,.0224,.005],[-.011,.012,.0013,.014,-.0015,.019,-.032,.013,-.04,-.05608], [.0021,.02,-.023,.0024,.025,-.081,.032,-.0513,.00014,-.00015],[.001,.02,-.003,.014,.035,-.001,.032,-.003,.0224,-.005], [.0021,-.002,-.023,.0024,.025,.01,.032,-.0513,.00014,-.00015],[-.0311,.012,.0013,.014,-.0015,.019,-.032,.013,-.014,-.008], [.001,.02,-.0203,.014,.035,-.001,.00032,-.0013,.0224,.05],[.0021,-.022,-.0213,.0024,.025,.081,.032,.05313,.00014,-.00015], [-.01331,.012,.0013,.014,.01015,.019,-.032,.013,-.014,-.012208],[.01021,-.022,-.023,.0024,.025,.081,.032,.0513,.00014,-.020015]]) y = a[:, 0] x = a[:, 1:] results = sm.OLS(y, x).fit() print results.summary() </code></pre> <p>The output:</p> <pre><code> Summary of Regression Results ======================================= | Dependent Variable: ['y']| | Model: OLS| | Method: Least Squares| | # obs: 10.0| | Df residuals: 1.0| | Df model: 8.0| ============================================================================== | coefficient std. error t-statistic prob. | ------------------------------------------------------------------------------ | x0 0.2557 0.6622 0.3862 0.7654 | | x1 0.03054 1.453 0.0210 0.9866 | | x2 -3.392 2.444 -1.3877 0.3975 | | x3 1.445 1.474 0.9808 0.5062 | | x4 0.03559 0.2610 0.1363 0.9137 | | x5 -0.7412 0.8754 -0.8467 0.5527 | | x6 0.02289 0.2466 0.0928 0.9411 | | x7 0.5754 1.413 0.4074 0.7537 | | x8 -0.4827 0.7569 -0.6378 0.6386 | ============================================================================== | Models stats Residual stats | ------------------------------------------------------------------------------ | R-squared: 0.8832 Durbin-Watson: 2.578 | | Adjusted R-squared: -0.05163 Omnibus: 0.5325 | | F-statistic: 0.9448 Prob(Omnibus): 0.7663 | | Prob (F-statistic): 0.6663 JB: 0.1630 | | Log likelihood: 41.45 Prob(JB): 0.9217 | | AIC criterion: -64.91 Skew: 0.4037 | | BIC criterion: -62.18 Kurtosis: 2.405 | ------------------------------------------------------------------------------ </code></pre>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    2. VO
      singulars
      1. This table or related slice is empty.
    3. VO
      singulars
      1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload