Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>I think you will never get an accurate result... I spent some time investigating how to do 3d graphics using canvas 2d context and I found it viable to do texture mapping gouraud shading by computing appropriate 2d gradients and matrices:</p> <ul> <li>Solid polygons are of course easy</li> <li>Gouraud filling is possible only on one component (i.e. you cannot have a triangle where every vertex is an arbitrary RGB filled with bilinear interpolation, but you can do that filling using for example three arbitrary shades of a single color)</li> <li>Linear texture mapping can be done using clipping and image drawing</li> </ul> <p>I would implement perspective-correct texture mapping using mesh subdivision (like on PS1).</p> <p>However I found many problems... for example image drawing with a matrix transform (needed for texture mapping) is quite inaccurate on chrome and IMO it's impossible to get a pixel-accurate result; in general there is no way to turn off antialiasing when drawing on a canvas and this means you will get visible see-through lines when subdividing in triangles. I also found multipass rendering working really bad on chrome (probably because of how hw-accellerated rendering is implemented).</p> <p>In general this kind of rendering is surely a stress for web browsers and apparently these use cases (strange matrices for example) are not tested very well. I was even able to get Firefox crashing so bad that it took down the whole X susbsystem on my Ubuntu.</p> <p>You can see the results of my efforts <a href="http://raksy.dyndns.org/torus.html" rel="noreferrer">here</a> or as a video <a href="http://www.youtube.com/watch?v=XHT23NnW-EY" rel="noreferrer">here</a>... IMO is surely impressing that this can be done in a browser without using 3D extensions, but I don't think current problems will be fixed in the future.</p> <p>Anyway the basic idea used to draw an image so that the 4 corners ends up in specific pixels position is to draw two triangles, each of which will use bilinear interpolation.</p> <p>In the following code I assume you have a picture object <code>texture</code> and 4 corners each of which is an object with fields <code>x,y,u,v</code> where <code>x,y</code> are pixel coordinates on the target canvas and <code>u,v</code> are pixel coordinates on <code>texture</code>:</p> <pre><code>function textureMap(ctx, texture, pts) { var tris = [[0, 1, 2], [2, 3, 0]]; // Split in two triangles for (var t=0; t&lt;2; t++) { var pp = tris[t]; var x0 = pts[pp[0]].x, x1 = pts[pp[1]].x, x2 = pts[pp[2]].x; var y0 = pts[pp[0]].y, y1 = pts[pp[1]].y, y2 = pts[pp[2]].y; var u0 = pts[pp[0]].u, u1 = pts[pp[1]].u, u2 = pts[pp[2]].u; var v0 = pts[pp[0]].v, v1 = pts[pp[1]].v, v2 = pts[pp[2]].v; // Set clipping area so that only pixels inside the triangle will // be affected by the image drawing operation ctx.save(); ctx.beginPath(); ctx.moveTo(x0, y0); ctx.lineTo(x1, y1); ctx.lineTo(x2, y2); ctx.closePath(); ctx.clip(); // Compute matrix transform var delta = u0*v1 + v0*u2 + u1*v2 - v1*u2 - v0*u1 - u0*v2; var delta_a = x0*v1 + v0*x2 + x1*v2 - v1*x2 - v0*x1 - x0*v2; var delta_b = u0*x1 + x0*u2 + u1*x2 - x1*u2 - x0*u1 - u0*x2; var delta_c = u0*v1*x2 + v0*x1*u2 + x0*u1*v2 - x0*v1*u2 - v0*u1*x2 - u0*x1*v2; var delta_d = y0*v1 + v0*y2 + y1*v2 - v1*y2 - v0*y1 - y0*v2; var delta_e = u0*y1 + y0*u2 + u1*y2 - y1*u2 - y0*u1 - u0*y2; var delta_f = u0*v1*y2 + v0*y1*u2 + y0*u1*v2 - y0*v1*u2 - v0*u1*y2 - u0*y1*v2; // Draw the transformed image ctx.transform(delta_a/delta, delta_d/delta, delta_b/delta, delta_e/delta, delta_c/delta, delta_f/delta); ctx.drawImage(texture, 0, 0); ctx.restore(); } } </code></pre> <p>Those ugly strange formulas for all those "delta" variables are used to solve two linear systems of three equations in three unknowns using <a href="http://en.wikipedia.org/wiki/Cramer&#39;s_rule" rel="noreferrer">Cramer's</a> method and <a href="http://en.wikipedia.org/wiki/Rule_of_Sarrus" rel="noreferrer">Sarrus</a> scheme for 3x3 determinants.</p> <p>More specifically we are looking for the values of <code>a</code>, <code>b</code>, ... <code>f</code> so that the following equations are satisfied</p> <pre><code>a*u0 + b*v0 + c = x0 a*u1 + b*v1 + c = x1 a*u2 + b*v2 + c = x2 d*u0 + e*v0 + f = y0 d*u1 + e*v1 + f = y1 d*u2 + e*v2 + f = y2 </code></pre> <p><code>delta</code> is the determinant of the matrix</p> <pre><code>u0 v0 1 u1 v1 1 u2 v2 1 </code></pre> <p>and for example <code>delta_a</code> is the determinant of the same matrix when you replace the first column with <code>x0</code>, <code>x1</code>, <code>x2</code>. With these you can compute <code>a = delta_a / delta</code>.</p>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    2. VO
      singulars
      1. This table or related slice is empty.
    3. VO
      singulars
      1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload