Note that there are some explanatory texts on larger screens.

plurals
  1. POBuilding an interleaved buffer for pyopengl and numpy
    primarykey
    data
    text
    <p>I'm trying to batch up a bunch of vertices and texture coords in an interleaved array before sending it to pyOpengl's glInterleavedArrays/glDrawArrays. The only problem is that I'm unable to find a suitably fast enough way to append data into a numpy array. </p> <p>Is there a better way to do this? I would have thought it would be quicker to preallocate the array and then fill it with data but instead, generating a python list and converting it to a numpy array is "faster". Although 15ms for 4096 quads seems slow.</p> <p>I have included some example code and their timings.</p> <pre><code>#!/usr/bin/python import timeit import numpy import ctypes import random USE_RANDOM=True USE_STATIC_BUFFER=True STATIC_BUFFER = numpy.empty(4096*20, dtype=numpy.float32) def render(i): # pretend these are different each time if USE_RANDOM: tex_left, tex_right, tex_top, tex_bottom = random.random(), random.random(), random.random(), random.random() left, right, top, bottom = random.random(), random.random(), random.random(), random.random() else: tex_left, tex_right, tex_top, tex_bottom = 0.0, 1.0, 1.0, 0.0 left, right, top, bottom = -1.0, 1.0, 1.0, -1.0 ibuffer = ( tex_left, tex_bottom, left, bottom, 0.0, # Lower left corner tex_right, tex_bottom, right, bottom, 0.0, # Lower right corner tex_right, tex_top, right, top, 0.0, # Upper right corner tex_left, tex_top, left, top, 0.0, # upper left ) return ibuffer # create python list.. convert to numpy array at end def create_array_1(): ibuffer = [] for x in xrange(4096): data = render(x) ibuffer += data ibuffer = numpy.array(ibuffer, dtype=numpy.float32) return ibuffer # numpy.array, placing individually by index def create_array_2(): if USE_STATIC_BUFFER: ibuffer = STATIC_BUFFER else: ibuffer = numpy.empty(4096*20, dtype=numpy.float32) index = 0 for x in xrange(4096): data = render(x) for v in data: ibuffer[index] = v index += 1 return ibuffer # using slicing def create_array_3(): if USE_STATIC_BUFFER: ibuffer = STATIC_BUFFER else: ibuffer = numpy.empty(4096*20, dtype=numpy.float32) index = 0 for x in xrange(4096): data = render(x) ibuffer[index:index+20] = data index += 20 return ibuffer # using numpy.concat on a list of ibuffers def create_array_4(): ibuffer_concat = [] for x in xrange(4096): data = render(x) # converting makes a diff! data = numpy.array(data, dtype=numpy.float32) ibuffer_concat.append(data) return numpy.concatenate(ibuffer_concat) # using numpy array.put def create_array_5(): if USE_STATIC_BUFFER: ibuffer = STATIC_BUFFER else: ibuffer = numpy.empty(4096*20, dtype=numpy.float32) index = 0 for x in xrange(4096): data = render(x) ibuffer.put( xrange(index, index+20), data) index += 20 return ibuffer # using ctype array CTYPES_ARRAY = ctypes.c_float*(4096*20) def create_array_6(): ibuffer = [] for x in xrange(4096): data = render(x) ibuffer += data ibuffer = CTYPES_ARRAY(*ibuffer) return ibuffer def equals(a, b): for i,v in enumerate(a): if b[i] != v: return False return True if __name__ == "__main__": number = 100 # if random, don't try and compare arrays if not USE_RANDOM and not USE_STATIC_BUFFER: a = create_array_1() assert equals( a, create_array_2() ) assert equals( a, create_array_3() ) assert equals( a, create_array_4() ) assert equals( a, create_array_5() ) assert equals( a, create_array_6() ) t = timeit.Timer( "testing2.create_array_1()", "import testing2" ) print 'from list:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_2()", "import testing2" ) print 'array: indexed:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_3()", "import testing2" ) print 'array: slicing:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_4()", "import testing2" ) print 'array: concat:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_5()", "import testing2" ) print 'array: put:', t.timeit(number)/number*1000.0, 'ms' t = timeit.Timer( "testing2.create_array_6()", "import testing2" ) print 'ctypes float array:', t.timeit(number)/number*1000.0, 'ms' </code></pre> <p>Timings using random numbers:</p> <pre><code>$ python testing2.py from list: 15.0486779213 ms array: indexed: 24.8184704781 ms array: slicing: 50.2214789391 ms array: concat: 44.1691994667 ms array: put: 73.5879898071 ms ctypes float array: 20.6674289703 ms </code></pre> <p><strong>edit note: changed code to produce random numbers for each render to reduce object reuse and to simulate different vertices each time.</strong></p> <p><strong>edit note2: added static buffer and force all numpy.empty() to use dtype=float32</strong></p> <p><strong>note 1/Apr/2010: still no progress and I don't really feel that any of the answers have solved the problem yet.</strong></p>
    singulars
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload