Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>Though the question has been answered, I just want to reiterate that salts used for hashing should be random and not like email address as suggested in first answer. </p> <p>More explanation is available at- <a href="http://www.pivotalsecurity.com/blog/password-hashing-salt-should-it-be-random/" rel="noreferrer">http://www.pivotalsecurity.com/blog/password-hashing-salt-should-it-be-random/</a></p> <blockquote> <p>Recently I had a discussion whether password hashes salted with random bits are more secure than the one salted with guessable or known salts. Let’s see: If the system storing password is compromised as well as the system which stores the random salt, the attacker will have access to hash as well as salt, so whether the salt is random or not, doesn’t matter. The attacker will can generate pre-computed rainbow tables to crack the hash. Here comes the interesting part- it is not so trivial to generate pre-computed tables. Let us take example of WPA security model. Your WPA password is actually never sent to Wireless Access Point. Instead, it is hashed with your SSID (the network name- like Linksys, Dlink etc). A very good explanation of how this works is here. In order to retrieve password from hash, you will need to know the password as well as salt (network name). Church of Wifi has already pre-computed hash tables which has top 1000 SSIDs and about 1 million passwords. The size is of all tables is about 40 GB. As you can read on their site, someone used 15 FGPA arrays for 3 days to generate these tables. Assuming victim is using the SSID as “a387csf3″ and password as “123456″, will it be cracked by those tables? No! .. it cannot. Even if the password is weak, the tables don’t have hashes for SSID a387csf3. This is the beauty of having random salt. It will deter crackers who thrive upon pre-computed tables. Can it stop a determined hacker? Probably not. But using random salts does provide additional layer of defense. While we are on this topic, let us discuss additional advantage of storing random salts on a separate system. Scenario #1 : Password hashes are stored on system X and salt values used for hashing are stored on system Y. These salt values are guessable or known (e.g. username) Scenario#2 : Password hashes are stored on system X and salt values used for hashing are stored on system Y. These salt values are random. In case system X has been compromised, as you can guess, there is a huge advantage of using random salt on a separate system (Scenario #2) . The attacker will need to guess addition values to be able to crack hashes. If a 32 bit salt is used, 2^32= 4,294,967,296 (about 4.2 billion) iterations will can be required for each password guessed.</p> </blockquote>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    2. VO
      singulars
      1. This table or related slice is empty.
    3. VO
      singulars
      1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload