Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>there are at least two approaches to this problem</p> <h2>Approach 1</h2> <p>you can use the fact that principal curvatures are the eigenvalues of a <a href="http://en.wikipedia.org/wiki/Shape_operator#Shape_operator" rel="nofollow noreferrer">shape operator</a> - a linear function on the space defined on two its tangent vectors. </p> <p>procedure:</p> <pre><code>1. compute shape operator: </code></pre> <p>find two tangent vectors and then compute</p> <p><img src="https://i.stack.imgur.com/kmzYv.png" alt="enter image description here"></p> <p>you will find a matrix</p> <p><img src="https://i.stack.imgur.com/h46Td.png" alt="enter image description here"></p> <pre><code>2. and then the eigenvalues of this matrix are principal curvatures k1, k2 </code></pre> <h2>Approach 2</h2> <p>We will use the fact that principal curvatures of the surface <code>S</code> at the given point <code>P</code> are the roots in the real domain of the equation</p> <pre><code>(EG-F^2)k^2 - (EN-2FM+GL)k + LN-M^2 = 0 (1) </code></pre> <p>where <code>k</code> is the main curvature and coefficients are taken from first &amp; second fundamental form. They are given in terms of the parametric equation. To get these roots we will use the fact that instead of calculating <code>k1</code> and <code>k2</code> from the (1) we can find eigenvalues of a matrix <code>A</code>, where <code>A</code> is defined as</p> <p><img src="https://i.stack.imgur.com/aqQYT.png" alt="enter image description here"></p> <p>and matrix <code>F1</code> contains coefficients of the first fundamental form</p> <p><img src="https://i.stack.imgur.com/jXREc.png" alt="enter image description here"></p> <p>matrix <code>F2</code> contains coefficients of the second fundamental form</p> <p><img src="https://i.stack.imgur.com/5t898.png" alt="enter image description here"></p>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    2. VO
      singulars
      1. This table or related slice is empty.
    3. VO
      singulars
      1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload