Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>I have a solution:</p> <pre><code>(4N!)=((2N!)^2) . mul(i=all primes&lt;=4N) of [i^sum(j=1,2,3,4,5,...4N&gt;=i^j) of [(4N/(i^j))%2]] </code></pre> <p>sub-terms of <code>T2</code> are always <code>prime^exponent</code> where exponent can be computed on small integers like this:</p> <pre><code>for (e=0,j=N4;j;e+=j&amp;1,j/=p); </code></pre> <p>where <code>e</code> is exponent, <code>p</code> is prime and <code>N4</code> is <code>4*N</code></p> <p><strong>Code for the new equation:</strong></p> <pre><code>// edit beg: // Sorry, forget to copy sorted list of all primes up to max n here it is // end of table is marked with 0 // Primes are in DWORDs so they only 4Byte per number // so the table is very small compared with lookup table for the same max n! // and also primes are needed for many other routines in bignum // can compute n! for n &lt;= max prime in table DWORD _arithmetics_primes[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,0}; // edit end. longnum fact(const DWORD &amp;x) { if (x&lt;=4) { if (x==4) return 24; if (x==3) return 6; if (x==2) return 2; if (x==1) return 1; if (x==0) return 1; } int N4,N2,p,i,j,e; longnum c,pp; N4=(x&gt;&gt;2)&lt;&lt;2; N2=N4&gt;&gt;1; c=fact(N2); c*=c; // c=((2N)!)^2; for (i=0;;i++) // c*= T2 { p=_arithmetics_primes[i]; if (!p) break; if (p&gt;N4) break; for (e=0,j=N4;j;e+=j&amp;1,j/=p); if (e) // c*=p^e { if (p==2) c&lt;&lt;=e; else for (pp=p;;) { if (int(e&amp;1)) c*=pp; e&gt;&gt;=1; if (!e) break; pp*=pp; } } } for (i=N4+1;i&lt;=x;i++) { c*=i; } c.round(); return c; } </code></pre> <p>Here are rough time measurements for the first 128 factorials so you can estimate real complexity.</p> <pre><code>Fixed point 768.128 bits arithmetics ... 231.36 decimals. [ 0.001 ms ] 1! = 1 [ 0.000 ms ] 2! = 2 [ 0.000 ms ] 3! = 6 [ 0.000 ms ] 4! = 24 [ 0.006 ms ] 5! = 120 [ 0.006 ms ] 6! = 720 [ 0.007 ms ] 7! = 5040 [ 0.005 ms ] 8! = 40320 [ 0.006 ms ] 9! = 362880 [ 0.007 ms ] 10! = 3628800 [ 0.008 ms ] 11! = 39916800 [ 0.012 ms ] 12! = 479001600 [ 0.013 ms ] 13! = 6227020800 [ 0.014 ms ] 14! = 87178291200 [ 0.016 ms ] 15! = 1307674368000 [ 0.014 ms ] 16! = 20922789888000 [ 0.015 ms ] 17! = 355687428096000 [ 0.017 ms ] 18! = 6402373705728000 [ 0.019 ms ] 19! = 121645100408832000 [ 0.016 ms ] 20! = 2432902008176640000 [ 0.017 ms ] 21! = 51090942171709440000 [ 0.019 ms ] 22! = 1124000727777607680000 [ 0.021 ms ] 23! = 25852016738884976640000 [ 0.023 ms ] 24! = 620448401733239439360000 [ 0.025 ms ] 25! = 15511210043330985984000000 [ 0.027 ms ] 26! = 403291461126605635584000000 [ 0.029 ms ] 27! = 10888869450418352160768000000 [ 0.032 ms ] 28! = 304888344611713860501504000000 [ 0.034 ms ] 29! = 8841761993739701954543616000000 [ 0.037 ms ] 30! = 265252859812191058636308480000000 [ 0.039 ms ] 31! = 8222838654177922817725562880000000 [ 0.034 ms ] 32! = 263130836933693530167218012160000000 [ 0.037 ms ] 33! = 8683317618811886495518194401280000000 [ 0.039 ms ] 34! = 295232799039604140847618609643520000000 [ 0.041 ms ] 35! = 10333147966386144929666651337523200000000 [ 0.039 ms ] 36! = 371993326789901217467999448150835200000000 [ 0.041 ms ] 37! = 13763753091226345046315979581580902400000000 [ 0.044 ms ] 38! = 523022617466601111760007224100074291200000000 [ 0.046 ms ] 39! = 20397882081197443358640281739902897356800000000 [ 0.041 ms ] 40! = 815915283247897734345611269596115894272000000000 [ 0.044 ms ] 41! = 33452526613163807108170062053440751665152000000000 [ 0.046 ms ] 42! = 1405006117752879898543142606244511569936384000000000 [ 0.049 ms ] 43! = 60415263063373835637355132068513997507264512000000000 [ 0.048 ms ] 44! = 2658271574788448768043625811014615890319638528000000000 [ 0.050 ms ] 45! = 119622220865480194561963161495657715064383733760000000000 [ 0.054 ms ] 46! = 5502622159812088949850305428800254892961651752960000000000 [ 0.056 ms ] 47! = 258623241511168180642964355153611979969197632389120000000000 [ 0.056 ms ] 48! = 12413915592536072670862289047373375038521486354677760000000000 [ 0.060 ms ] 49! = 608281864034267560872252163321295376887552831379210240000000000 [ 0.063 ms ] 50! = 30414093201713378043612608166064768844377641568960512000000000000 [ 0.066 ms ] 51! = 1551118753287382280224243016469303211063259720016986112000000000000 [ 0.065 ms ] 52! = 80658175170943878571660636856403766975289505440883277824000000000000 [ 0.069 ms ] 53! = 4274883284060025564298013753389399649690343788366813724672000000000000 [ 0.072 ms ] 54! = 230843697339241380472092742683027581083278564571807941132288000000000000 [ 0.076 ms ] 55! = 12696403353658275925965100847566516959580321051449436762275840000000000000 [ 0.077 ms ] 56! = 710998587804863451854045647463724949736497978881168458687447040000000000000 [ 0.162 ms ] 57! = 40526919504877216755680601905432322134980384796226602145184481280000000000000 [ 0.095 ms ] 58! = 2350561331282878571829474910515074683828862318181142924420699914240000000000000 [ 0.093 ms ] 59! = 138683118545689835737939019720389406345902876772687432540821294940160000000000000 [ 0.089 ms ] 60! = 8320987112741390144276341183223364380754172606361245952449277696409600000000000000 [ 0.093 ms ] 61! = 507580213877224798800856812176625227226004528988036003099405939480985600000000000000 [ 0.098 ms ] 62! = 31469973260387937525653122354950764088012280797258232192163168247821107200000000000000 [ 0.096 ms ] 63! = 1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000 [ 0.090 ms ] 64! = 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000 [ 0.100 ms ] 65! = 8247650592082470666723170306785496252186258551345437492922123134388955774976000000000000000 [ 0.104 ms ] 66! = 544344939077443064003729240247842752644293064388798874532860126869671081148416000000000000000 [ 0.111 ms ] 67! = 36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000 [ 0.100 ms ] 68! = 2480035542436830599600990418569171581047399201355367672371710738018221445712183296000000000000000 [ 0.121 ms ] 69! = 171122452428141311372468338881272839092270544893520369393648040923257279754140647424000000000000000 [ 0.109 ms ] 70! = 11978571669969891796072783721689098736458938142546425857555362864628009582789845319680000000000000000 [ 0.119 ms ] 71! = 850478588567862317521167644239926010288584608120796235886430763388588680378079017697280000000000000000 [ 0.104 ms ] 72! = 61234458376886086861524070385274672740778091784697328983823014963978384987221689274204160000000000000000 [ 0.124 ms ] 73! = 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000000 [ 0.113 ms ] 74! = 330788544151938641225953028221253782145683251820934971170611926835411235700971565459250872320000000000000000 [ 0.118 ms ] 75! = 24809140811395398091946477116594033660926243886570122837795894512655842677572867409443815424000000000000000000 [ 0.118 ms ] 76! = 1885494701666050254987932260861146558230394535379329335672487982961844043495537923117729972224000000000000000000 [ 0.123 ms ] 77! = 145183092028285869634070784086308284983740379224208358846781574688061991349156420080065207861248000000000000000000 [ 0.129 ms ] 78! = 11324281178206297831457521158732046228731749579488251990048962825668835325234200766245086213177344000000000000000000 [ 0.133 ms ] 79! = 894618213078297528685144171539831652069808216779571907213868063227837990693501860533361810841010176000000000000000000 [ 0.121 ms ] 80! = 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000 [ 0.119 ms ] 81! = 5797126020747367985879734231578109105412357244731625958745865049716390179693892056256184534249745940480000000000000000000 [ 0.131 ms ] 82! = 475364333701284174842138206989404946643813294067993328617160934076743994734899148613007131808479167119360000000000000000000 [ 0.150 ms ] 83! = 39455239697206586511897471180120610571436503407643446275224357528369751562996629334879591940103770870906880000000000000000000 [ 0.141 ms ] 84! = 3314240134565353266999387579130131288000666286242049487118846032383059131291716864129885722968716753156177920000000000000000000 [ 0.148 ms ] 85! = 281710411438055027694947944226061159480056634330574206405101912752560026159795933451040286452340924018275123200000000000000000000 [ 0.154 ms ] 86! = 24227095383672732381765523203441259715284870552429381750838764496720162249742450276789464634901319465571660595200000000000000000000 [ 0.163 ms ] 87! = 2107757298379527717213600518699389595229783738061356212322972511214654115727593174080683423236414793504734471782400000000000000000000 [ 0.211 ms ] 88! = 185482642257398439114796845645546284380220968949399346684421580986889562184028199319100141244804501828416633516851200000000000000000000 [ 0.151 ms ] 89! = 16507955160908461081216919262453619309839666236496541854913520707833171034378509739399912570787600662729080382999756800000000000000000000 [ 0.157 ms ] 90! = 1485715964481761497309522733620825737885569961284688766942216863704985393094065876545992131370884059645617234469978112000000000000000000000 [ 0.166 ms ] 91! = 135200152767840296255166568759495142147586866476906677791741734597153670771559994765685283954750449427751168336768008192000000000000000000000 [ 0.161 ms ] 92! = 12438414054641307255475324325873553077577991715875414356840239582938137710983519518443046123837041347353107486982656753664000000000000000000000 [ 0.169 ms ] 93! = 1156772507081641574759205162306240436214753229576413535186142281213246807121467315215203289516844845303838996289387078090752000000000000000000000 [ 0.173 ms ] 94! = 108736615665674308027365285256786601004186803580182872307497374434045199869417927630229109214583415458560865651202385340530688000000000000000000000 [ 0.188 ms ] 95! = 10329978488239059262599702099394727095397746340117372869212250571234293987594703124871765375385424468563282236864226607350415360000000000000000000000 [ 0.181 ms ] 96! = 991677934870949689209571401541893801158183648651267795444376054838492222809091499987689476037000748982075094738965754305639874560000000000000000000000 [ 0.187 ms ] 97! = 96192759682482119853328425949563698712343813919172976158104477319333745612481875498805879175589072651261284189679678167647067832320000000000000000000000 [ 0.194 ms ] 98! = 9426890448883247745626185743057242473809693764078951663494238777294707070023223798882976159207729119823605850588608460429412647567360000000000000000000000 [ 0.201 ms ] 99! = 933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168640000000000000000000000 [ 0.185 ms ] 100! = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000 [ 0.191 ms ] 101! = 9425947759838359420851623124482936749562312794702543768327889353416977599316221476503087861591808346911623490003549599583369706302603264000000000000000000000000 [ 0.202 ms ] 102! = 961446671503512660926865558697259548455355905059659464369444714048531715130254590603314961882364451384985595980362059157503710042865532928000000000000000000000000 [ 0.207 ms ] 103! = 99029007164861804075467152545817733490901658221144924830052805546998766658416222832141441073883538492653516385977292093222882134415149891584000000000000000000000000 [ 0.242 ms ] 104! = 10299016745145627623848583864765044283053772454999072182325491776887871732475287174542709871683888003235965704141638377695179741979175588724736000000000000000000000000 [ 0.210 ms ] 105! = 1081396758240290900504101305800329649720646107774902579144176636573226531909905153326984536526808240339776398934872029657993872907813436816097280000000000000000000000000 [ 0.215 ms ] 106! = 114628056373470835453434738414834942870388487424139673389282723476762012382449946252660360871841673476016298287096435143747350528228224302506311680000000000000000000000000 [ 0.221 ms ] 107! = 12265202031961379393517517010387338887131568154382945052653251412013535324922144249034658613287059061933743916719318560380966506520420000368175349760000000000000000000000000 [ 0.217 ms ] 108! = 1324641819451828974499891837121832599810209360673358065686551152497461815091591578895743130235002378688844343005686404521144382704205360039762937774080000000000000000000000000 [ 0.226 ms ] 109! = 144385958320249358220488210246279753379312820313396029159834075622223337844983482099636001195615259277084033387619818092804737714758384244334160217374720000000000000000000000000 [ 0.232 ms ] 110! = 15882455415227429404253703127090772871724410234473563207581748318444567162948183030959960131517678520479243672638179990208521148623422266876757623911219200000000000000000000000000 [ 0.240 ms ] 111! = 1762952551090244663872161047107075788761409536026565516041574063347346955087248316436555574598462315773196047662837978913145847497199871623320096254145331200000000000000000000000000 [ 0.213 ms ] 112! = 197450685722107402353682037275992488341277868034975337796656295094902858969771811440894224355027779366597957338237853638272334919686385621811850780464277094400000000000000000000000000 [ 0.231 ms ] 113! = 22311927486598136465966070212187151182564399087952213171022161345724023063584214692821047352118139068425569179220877461124773845924561575264739138192463311667200000000000000000000000000 [ 0.240 ms ] 114! = 2543559733472187557120132004189335234812341496026552301496526393412538629248600474981599398141467853800514886431180030568224218435400019580180261753940817530060800000000000000000000000000 [ 0.252 ms ] 115! = 292509369349301569068815180481773552003419272043053514672100535242441942363589054622883930786268803187059211939585703515345785120071002251720730101703194015956992000000000000000000000000000 [ 0.248 ms ] 116! = 33931086844518982011982560935885732032396635556994207701963662088123265314176330336254535971207181169698868584991941607780111073928236261199604691797570505851011072000000000000000000000000000 [ 0.598 ms ] 117! = 3969937160808720895401959629498630647790406360168322301129748464310422041758630649341780708631240196854767624444057168110272995649603642560353748940315749184568295424000000000000000000000000000 [ 0.259 ms ] 118! = 468452584975429065657431236280838416439267950499862031533310318788629800927518416622330123618486343228862579684398745837012213486653229822121742374957258403779058860032000000000000000000000000000 [ 0.261 ms ] 119! = 55745857612076058813234317117419771556272886109483581752463927935846946310374691578057284710599874844234646982443450754604453404911734348832487342619913750049708004343808000000000000000000000000000 [ 0.254 ms ] 120! = 6689502913449127057588118054090372586752746333138029810295671352301633557244962989366874165271984981308157637893214090552534408589408121859898481114389650005964960521256960000000000000000000000000000 [ 0.263 ms ] 121! = 809429852527344373968162284544935082997082306309701607045776233628497660426640521713391773997910182738287074185078904956856663439318382745047716214841147650721760223072092160000000000000000000000000000 [ 0.270 ms ] 122! = 98750442008336013624115798714482080125644041369783596059584700502676714572050143649033796427745042294071023050579626404736512939596842694895821378210620013388054747214795243520000000000000000000000000000 [ 0.281 ms ] 123! = 12146304367025329675766243241881295855454217088483382315328918161829235892362167668831156960612640202170735835221294047782591091570411651472186029519906261646730733907419814952960000000000000000000000000000 [ 0.290 ms ] 124! = 1506141741511140879795014161993280686076322918971939407100785852066825250652908790935063463115967385069171243567440461925041295354731044782551067660468376444194611004520057054167040000000000000000000000000000 [ 0.322 ms ] 125! = 188267717688892609974376770249160085759540364871492425887598231508353156331613598866882932889495923133646405445930057740630161919341380597818883457558547055524326375565007131770880000000000000000000000000000000 [ 0.303 ms ] 126! = 23721732428800468856771473051394170805702085973808045661837377170052497697783313457227249544076486314839447086187187275319400401837013955325179315652376928996065123321190898603130880000000000000000000000000000000 [ 0.313 ms ] 127! = 3012660018457659544809977077527059692324164918673621799053346900596667207618480809067860692097713761984609779945772783965563851033300772326297773087851869982500270661791244122597621760000000000000000000000000000000 [ 0.307 ms ] 128! = 385620482362580421735677065923463640617493109590223590278828403276373402575165543560686168588507361534030051833058916347592172932262498857766114955245039357760034644709279247692495585280000000000000000000000000000000 refernce 128! = 385620482362580421735677065923463640617493109590223590278828403276373402575165543560686168588507361534030051833058916347592172932262498857766114955245039357760034644709279247692495585280000000000000000000000000000000 </code></pre> <p>My measurements reveal that <code>N!</code> uses</p> <ul> <li>max of <code>2.2N</code> fast low level long operations (<code>+,-,&lt;&lt;,&gt;&gt;</code>)</li> <li>slightly less than <code>N/2</code> long multiplications, but most of them are convenient in size which speeds up the multiplication, so the measured time do not match the obvious <code>O(N/2)</code>. Instead I roughly estimate <code>O(log(N/4)*N/4)</code> but I can be wrong...</li> </ul> <p>Also I have tried factorial as non recursive multiplication of primes only (similar to <code>T2</code> term), but the results was much slower.</p> <p><strong>P.S.:</strong> Code posted in the question is also <code>100%</code> working, but slower than new one (even if it uses fewer multiplications - because of more memory needed for recursion and not optimized multiplicants order).</p>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    2. VO
      singulars
      1. This table or related slice is empty.
    3. VO
      singulars
      1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload