Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>Here is my attempt at answering my question after reading the paper</p> <ul> <li>Zhengyou Zhang , Li-Wei He, "Whiteboard scanning and image enhancement" <a href="http://research.microsoft.com/en-us/um/people/zhang/papers/tr03-39.pdf" rel="noreferrer">http://research.microsoft.com/en-us/um/people/zhang/papers/tr03-39.pdf</a></li> </ul> <p>I manipulated the equations for some time in SAGE, and came up with this pseudo-code in c-style:</p> <pre><code> // in case it matters: licensed under GPLv2 or later // legend: // sqr(x) = x*x // sqrt(x) = square root of x // let m1x,m1y ... m4x,m4y be the (x,y) pixel coordinates // of the 4 corners of the detected quadrangle // i.e. (m1x, m1y) are the cordinates of the first corner, // (m2x, m2y) of the second corner and so on. // let u0, v0 be the pixel coordinates of the principal point of the image // for a normal camera this will be the center of the image, // i.e. u0=IMAGEWIDTH/2; v0 =IMAGEHEIGHT/2 // This assumption does not hold if the image has been cropped asymmetrically // first, transform the image so the principal point is at (0,0) // this makes the following equations much easier m1x = m1x - u0; m1y = m1y - v0; m2x = m2x - u0; m2y = m2y - v0; m3x = m3x - u0; m3y = m3y - v0; m4x = m4x - u0; m4y = m4y - v0; // temporary variables k2, k3 double k2 = ((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x) / ((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) ; double k3 = ((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x) / ((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) ; // f_squared is the focal length of the camera, squared // if k2==1 OR k3==1 then this equation is not solvable // if the focal length is known, then this equation is not needed // in that case assign f_squared= sqr(focal_length) double f_squared = -((k3*m3y - m1y)*(k2*m2y - m1y) + (k3*m3x - m1x)*(k2*m2x - m1x)) / ((k3 - 1)*(k2 - 1)) ; //The width/height ratio of the original rectangle double whRatio = sqrt( (sqr(k2 - 1) + sqr(k2*m2y - m1y)/f_squared + sqr(k2*m2x - m1x)/f_squared) / (sqr(k3 - 1) + sqr(k3*m3y - m1y)/f_squared + sqr(k3*m3x - m1x)/f_squared) ) ; // if k2==1 AND k3==1, then the focal length equation is not solvable // but the focal length is not needed to calculate the ratio. // I am still trying to figure out under which circumstances k2 and k3 become 1 // but it seems to be when the rectangle is not distorted by perspective, // i.e. viewed straight on. Then the equation is obvious: if (k2==1 && k3==1) whRatio = sqrt( (sqr(m2y-m1y) + sqr(m2x-m1x)) / (sqr(m3y-m1y) + sqr(m3x-m1x)) // After testing, I found that the above equations // actually give the height/width ratio of the rectangle, // not the width/height ratio. // If someone can find the error that caused this, // I would be most grateful. // until then: whRatio = 1/whRatio; </code></pre> <h2>Update: here is how these equations where determined:</h2> <p>The following is code in <a href="http://www.sagemath.org/" rel="noreferrer">SAGE</a>. It can be accessed online at <a href="http://www.sagenb.org/home/pub/704/" rel="noreferrer">http://www.sagenb.org/home/pub/704/</a>. (Sage is really useful in solving equations, and useable in any browser, check it out)</p> <pre><code># CALCULATING THE ASPECT RATIO OF A RECTANGLE DISTORTED BY PERSPECTIVE # # BIBLIOGRAPHY: # [zhang-single]: "Single-View Geometry of A Rectangle # With Application to Whiteboard Image Rectification" # by Zhenggyou Zhang # http://research.microsoft.com/users/zhang/Papers/WhiteboardRectification.pdf # pixel coordinates of the 4 corners of the quadrangle (m1, m2, m3, m4) # see [zhang-single] figure 1 m1x = var('m1x') m1y = var('m1y') m2x = var('m2x') m2y = var('m2y') m3x = var('m3x') m3y = var('m3y') m4x = var('m4x') m4y = var('m4y') # pixel coordinates of the principal point of the image # for a normal camera this will be the center of the image, # i.e. u0=IMAGEWIDTH/2; v0 =IMAGEHEIGHT/2 # This assumption does not hold if the image has been cropped asymmetrically u0 = var('u0') v0 = var('v0') # pixel aspect ratio; for a normal camera pixels are square, so s=1 s = var('s') # homogenous coordinates of the quadrangle m1 = vector ([m1x,m1y,1]) m2 = vector ([m2x,m2y,1]) m3 = vector ([m3x,m3y,1]) m4 = vector ([m4x,m4y,1]) # the following equations are later used in calculating the the focal length # and the rectangle's aspect ratio. # temporary variables: k2, k3, n2, n3 # see [zhang-single] Equation 11, 12 k2_ = m1.cross_product(m4).dot_product(m3) / m2.cross_product(m4).dot_product(m3) k3_ = m1.cross_product(m4).dot_product(m2) / m3.cross_product(m4).dot_product(m2) k2 = var('k2') k3 = var('k3') # see [zhang-single] Equation 14,16 n2 = k2 * m2 - m1 n3 = k3 * m3 - m1 # the focal length of the camera. f = var('f') # see [zhang-single] Equation 21 f_ = sqrt( -1 / ( n2[2]*n3[2]*s^2 ) * ( ( n2[0]*n3[0] - (n2[0]*n3[2]+n2[2]*n3[0])*u0 + n2[2]*n3[2]*u0^2 )*s^2 + ( n2[1]*n3[1] - (n2[1]*n3[2]+n2[2]*n3[1])*v0 + n2[2]*n3[2]*v0^2 ) ) ) # standard pinhole camera matrix # see [zhang-single] Equation 1 A = matrix([[f,0,u0],[0,s*f,v0],[0,0,1]]) #the width/height ratio of the original rectangle # see [zhang-single] Equation 20 whRatio = sqrt ( (n2*A.transpose()^(-1) * A^(-1)*n2.transpose()) / (n3*A.transpose()^(-1) * A^(-1)*n3.transpose()) ) </code></pre> <p>The simplified equations in the c-code where determined by</p> <pre><code>print "simplified equations, assuming u0=0, v0=0, s=1" print "k2 := ", k2_ print "k3 := ", k3_ print "f := ", f_(u0=0,v0=0,s=1) print "whRatio := ", whRatio(u0=0,v0=0,s=1) simplified equations, assuming u0=0, v0=0, s=1 k2 := ((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) k3 := ((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) f := sqrt(-((k3*m3y - m1y)*(k2*m2y - m1y) + (k3*m3x - m1x)*(k2*m2x - m1x))/((k3 - 1)*(k2 - 1))) whRatio := sqrt(((k2 - 1)^2 + (k2*m2y - m1y)^2/f^2 + (k2*m2x - m1x)^2/f^2)/((k3 - 1)^2 + (k3*m3y - m1y)^2/f^2 + (k3*m3x - m1x)^2/f^2)) print "Everything in one equation:" print "whRatio := ", whRatio(f=f_)(k2=k2_,k3=k3_)(u0=0,v0=0,s=1) Everything in one equation: whRatio := sqrt(((((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - 1)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - 1)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2y/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1y)^2/((((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3y/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1y)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2y/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1y) + (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3x/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1x)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2x/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1x)) + (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - 1)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - 1)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2x/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1x)^2/((((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3y/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1y)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2y/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1y) + (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3x/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1x)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2x/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1x)) - (((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - 1)^2)/((((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - 1)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - 1)*(((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3y/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1y)^2/((((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3y/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1y)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2y/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1y) + (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3x/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1x)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2x/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1x)) + (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - 1)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - 1)*(((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3x/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1x)^2/((((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3y/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1y)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2y/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1y) + (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)*m3x/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - m1x)*(((m1y - m4y)*m3x - (m1x - m4x)*m3y + m1x*m4y - m1y*m4x)*m2x/((m2y - m4y)*m3x - (m2x - m4x)*m3y + m2x*m4y - m2y*m4x) - m1x)) - (((m1y - m4y)*m2x - (m1x - m4x)*m2y + m1x*m4y - m1y*m4x)/((m3y - m4y)*m2x - (m3x - m4x)*m2y + m3x*m4y - m3y*m4x) - 1)^2)) </code></pre> <pre><code> # some testing: # - choose a random rectangle, # - project it onto a random plane, # - insert the corners in the above equations, # - check if the aspect ratio is correct. from sage.plot.plot3d.transform import rotate_arbitrary #redundandly random rotation matrix rand_rotMatrix = \ rotate_arbitrary((uniform(-5,5),uniform(-5,5),uniform(-5,5)),uniform(-5,5)) *\ rotate_arbitrary((uniform(-5,5),uniform(-5,5),uniform(-5,5)),uniform(-5,5)) *\ rotate_arbitrary((uniform(-5,5),uniform(-5,5),uniform(-5,5)),uniform(-5,5)) #random translation vector rand_transVector = vector((uniform(-10,10),uniform(-10,10),uniform(-10,10))).transpose() #random rectangle parameters rand_width =uniform(0.1,10) rand_height=uniform(0.1,10) rand_left =uniform(-10,10) rand_top =uniform(-10,10) #random focal length and principal point rand_f = uniform(0.1,100) rand_u0 = uniform(-100,100) rand_v0 = uniform(-100,100) # homogenous standard pinhole projection, see [zhang-single] Equation 1 hom_projection = A * rand_rotMatrix.augment(rand_transVector) # construct a random rectangle in the plane z=0, then project it randomly rand_m1hom = hom_projection*vector((rand_left ,rand_top ,0,1)).transpose() rand_m2hom = hom_projection*vector((rand_left ,rand_top+rand_height,0,1)).transpose() rand_m3hom = hom_projection*vector((rand_left+rand_width,rand_top ,0,1)).transpose() rand_m4hom = hom_projection*vector((rand_left+rand_width,rand_top+rand_height,0,1)).transpose() #change type from 1x3 matrix to vector rand_m1hom = rand_m1hom.column(0) rand_m2hom = rand_m2hom.column(0) rand_m3hom = rand_m3hom.column(0) rand_m4hom = rand_m4hom.column(0) #normalize rand_m1hom = rand_m1hom/rand_m1hom[2] rand_m2hom = rand_m2hom/rand_m2hom[2] rand_m3hom = rand_m3hom/rand_m3hom[2] rand_m4hom = rand_m4hom/rand_m4hom[2] #substitute random values for f, u0, v0 rand_m1hom = rand_m1hom(f=rand_f,s=1,u0=rand_u0,v0=rand_v0) rand_m2hom = rand_m2hom(f=rand_f,s=1,u0=rand_u0,v0=rand_v0) rand_m3hom = rand_m3hom(f=rand_f,s=1,u0=rand_u0,v0=rand_v0) rand_m4hom = rand_m4hom(f=rand_f,s=1,u0=rand_u0,v0=rand_v0) # printing the randomly choosen values print "ground truth: f=", rand_f, "; ratio=", rand_width/rand_height # substitute all the variables in the equations: print "calculated: f= ",\ f_(k2=k2_,k3=k3_)(s=1,u0=rand_u0,v0=rand_v0)( m1x=rand_m1hom[0],m1y=rand_m1hom[1], m2x=rand_m2hom[0],m2y=rand_m2hom[1], m3x=rand_m3hom[0],m3y=rand_m3hom[1], m4x=rand_m4hom[0],m4y=rand_m4hom[1], ),"; 1/ratio=", \ 1/whRatio(f=f_)(k2=k2_,k3=k3_)(s=1,u0=rand_u0,v0=rand_v0)( m1x=rand_m1hom[0],m1y=rand_m1hom[1], m2x=rand_m2hom[0],m2y=rand_m2hom[1], m3x=rand_m3hom[0],m3y=rand_m3hom[1], m4x=rand_m4hom[0],m4y=rand_m4hom[1], ) print "k2 = ", k2_( m1x=rand_m1hom[0],m1y=rand_m1hom[1], m2x=rand_m2hom[0],m2y=rand_m2hom[1], m3x=rand_m3hom[0],m3y=rand_m3hom[1], m4x=rand_m4hom[0],m4y=rand_m4hom[1], ), "; k3 = ", k3_( m1x=rand_m1hom[0],m1y=rand_m1hom[1], m2x=rand_m2hom[0],m2y=rand_m2hom[1], m3x=rand_m3hom[0],m3y=rand_m3hom[1], m4x=rand_m4hom[0],m4y=rand_m4hom[1], ) # ATTENTION: testing revealed, that the whRatio # is actually the height/width ratio, # not the width/height ratio # This contradicts [zhang-single] # if anyone can find the error that caused this, I'd be grateful ground truth: f= 72.1045134124554 ; ratio= 3.46538779959142 calculated: f= 72.1045134125 ; 1/ratio= 3.46538779959 k2 = 0.99114614987 ; k3 = 1.57376280159 </code></pre>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    2. VO
      singulars
      1. This table or related slice is empty.
    3. VO
      singulars
      1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload