Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    primarykey
    data
    text
    <p>The elliptical curve arc link you posted includes a <a href="http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes" rel="nofollow">link to elliptical arc implementation notes</a>.</p> <p>In there, you will find the equations for <a href="http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter" rel="nofollow">conversion from endpoint to centre parameterisation</a>.</p> <p>Here is my JavaScript implementation of those equations, taken from <a href="http://users.ecs.soton.ac.uk/rfp07r/interactive-svg-examples/arc.html" rel="nofollow">an interactive demo of elliptical arc paths</a>, using <a href="http://sylvester.jcoglan.com/" rel="nofollow">Sylvester.js</a> to perform the matrix and vector calculations.</p> <pre><code>// Calculate the centre of the ellipse // Based on http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter var x1 = 150; // Starting x-point of the arc var y1 = 150; // Starting y-point of the arc var x2 = 400; // End x-point of the arc var y2 = 300; // End y-point of the arc var fA = 1; // Large arc flag var fS = 1; // Sweep flag var rx = 100; // Horizontal radius of ellipse var ry = 50; // Vertical radius of ellipse var phi = 0; // Angle between co-ord system and ellipse x-axes var Cx, Cy; // Step 1: Compute (x1′, y1′) var M = $M([ [ Math.cos(phi), Math.sin(phi)], [-Math.sin(phi), Math.cos(phi)] ]); var V = $V( [ (x1-x2)/2, (y1-y2)/2 ] ); var P = M.multiply(V); var x1p = P.e(1); // x1 prime var y1p = P.e(2); // y1 prime // Ensure radii are large enough // Based on http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters // Step (a): Ensure radii are non-zero // Step (b): Ensure radii are positive rx = Math.abs(rx); ry = Math.abs(ry); // Step (c): Ensure radii are large enough var lambda = ( (x1p * x1p) / (rx * rx) ) + ( (y1p * y1p) / (ry * ry) ); if(lambda &gt; 1) { rx = Math.sqrt(lambda) * rx; ry = Math.sqrt(lambda) * ry; } // Step 2: Compute (cx′, cy′) var sign = (fA == fS)? -1 : 1; // Bit of a hack, as presumably rounding errors were making his negative inside the square root! if((( (rx*rx*ry*ry) - (rx*rx*y1p*y1p) - (ry*ry*x1p*x1p) ) / ( (rx*rx*y1p*y1p) + (ry*ry*x1p*x1p) )) &lt; 1e-7) var co = 0; else var co = sign * Math.sqrt( ( (rx*rx*ry*ry) - (rx*rx*y1p*y1p) - (ry*ry*x1p*x1p) ) / ( (rx*rx*y1p*y1p) + (ry*ry*x1p*x1p) ) ); var V = $V( [rx*y1p/ry, -ry*x1p/rx] ); var Cp = V.multiply(co); // Step 3: Compute (cx, cy) from (cx′, cy′) var M = $M([ [ Math.cos(phi), -Math.sin(phi)], [ Math.sin(phi), Math.cos(phi)] ]); var V = $V( [ (x1+x2)/2, (y1+y2)/2 ] ); var C = M.multiply(Cp).add(V); Cx = C.e(1); Cy = C.e(2); </code></pre>
    singulars
    1. This table or related slice is empty.
    plurals
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. This table or related slice is empty.
    1. VO
      singulars
      1. This table or related slice is empty.
    1. This table or related slice is empty.
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload