Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>Scatter plot is actually a collection of lines (circles to be exacts).</p> <p>if you store your scatter plot in an object you could access it's properties, one of them is called set_visible. Here is an example:</p> <pre><code>""" make a scatter plot with varying color and size arguments code mostly from: http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/scatter_demo2.py """ import matplotlib import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import matplotlib.cbook as cbook # load a numpy record array from yahoo csv data with fields date, # open, close, volume, adj_close from the mpl-data/example directory. # The record array stores python datetime.date as an object array in # the date column datafile = cbook.get_sample_data('/usr/share/matplotlib/sampledata/goog.npy') #datafile = /usr/share/matplotlib/sampledata r = np.load(datafile).view(np.recarray) r = r[-250:] # get the most recent 250 trading days delta1 = np.diff(r.adj_close)/r.adj_close[:-1] # size in points ^2 volume = (15*r.volume[:-2]/r.volume[0])**2 close = 0.003*r.close[:-2]/0.003*r.open[:-2] fig = plt.figure() ax = fig.add_subplot(111) ## store the scatter in abc object abc=ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.75) ### if you comment that line of set False to True, you'll see what happens. abc.set_visible(False) #ticks = arange(-0.06, 0.061, 0.02) #xticks(ticks) #yticks(ticks) ax.set_xlabel(r'$\Delta_i$', fontsize=20) ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=20) ax.set_title('Volume and percent change') ax.grid(True) plt.show() </code></pre>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload