Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>While I'm not a compiler expert, I believe that it boils down to the fact that you lose something in translation to C as opposed to translating to e.g. LLVM's intermediate language.</p> <p>If you think about the process of compiling to C, you create a compiler that translates to C code, then the C compiler translates to an intermediate representation (the in-memory AST), then translates that to machine code. The creators of the C compiler have probably spent a lot of time optimizing certain human-made patterns in the language, but you're not likely to be able to create a fancy enough compiler from a source language to C to emulate the way humans write code. There is a loss of fidelity going to C - the C compiler doesn't have any knowledge about your original code's structure. To get those optimizations, you're essentially back-fitting your compiler to try to generate C code that the C compiler knows how to optimize when it's building its AST. Messy.</p> <p>If, however, you translate directly to LLVM's intermediate language, that's like compiling your code to a machine-independent high-level bytecode, which is akin to the C compiler giving you access to specify exactly what its AST should contain. Essentially, you cut out the middleman that parses the C code and go directly to the high-level representation, which preserves more of the characteristics of your code by requiring less translation.</p> <p>Also related to performance, LLVM can do some really tricky stuff for dynamic languages like generating binary code at runtime. This is the "cool" part of just-in-time compilation: it is writing binary code to be executed at runtime, instead of being stuck with what was created at compile time.</p>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload