Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>My work tried a pilot project to migrate historical data from an ERP setup. The size of the data is on the small side, only 60Gbyte, covering over ~ 21 million rows, the largest table having 16 million rows. There's an additional ~15 million rows waiting to come into the pipe but the pilot has been shelved due to other priorities. The plan was to use PostgreSQL's "Job" facility to schedule queries that would regenerate data on a daily basis suitable for use in analytics.</p> <p>Running simple aggregates over the large 16-million record table, the first thing I noticed is how sensitive it is to the amount of RAM available. An increase in RAM at one point allowed for a year's worth of aggregates without resorting to sequential table scans.</p> <p>If you decide to use PostgreSQL, I would highly recommend re-tuning the config file, as it tends to ship with the most conservative settings possible (so that it will run on systems with little RAM). Tuning takes a little bit, maybe a few hours, but once you get it to a point where response is acceptable, just set it and forget it.</p> <p>Once you have the server-side tuning done (and it's all about memory, surprise!) you'll turn your attention to your indexes. Indexing and query planning also requires a little effort but once set you'll find it to be effective. Partial indexes are a nice feature for isolating those records that have "edge-case" data in them, I highly recommend this feature if you are looking for exceptions in a sea of similar data.</p> <p>Lastly, use the table space feature to relocate the data onto a fast drive array.</p>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload