Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>This <a href="http://java-persistence-performance.blogspot.com/2011/06/how-to-improve-jpa-performance-by-1825.html" rel="nofollow">article</a> has many tips to improve batch writing performance with JPA. I'll quote the two that should give you the best result for fast reference.</p> <blockquote> <p>Optimization #6 - Sequence Pre-allocation </p> <p>We have optimized the first part of the application, reading from the MySQL database. The second part is to optimize the writing to Oracle.</p> <p>The biggest issue with the writing process is that the Id generation is using an allocation size of 1. This means that for every insert there will be an update and a select for the next sequence number. This is a major issue, as it is effectively doubling the amount of database access. By default JPA uses a pre-allocation size of 50 for TABLE and SEQUENCE Id generation, and 1 for IDENTITY Id generation (a very good reason to never use IDENTITY Id generation). But frequently applications are unnecessarily paranoid of holes in their Id values and set the pre-allocaiton value to 1. By changing the pre-allocation size from 1 to 500, we reduce about 1000 database accesses per page.</p> <p>Optimization #8 - Batch Writing </p> <p>Many databases provide an optimization that allows a batch of write operations to be performed as a single database access. There is both parametrized and dynamic batch writing. For parametrized batch writing a single parametrized SQL statement can be executed with a batch of parameter vales instead of a single set of parameter values. This is very optimal as the SQL only needs to be executed once, and all of the data can be passed optimally to the database.</p> <p>Dynamic batch writing requires dynamic (non-parametrized) SQL that is batched into a single big statement and sent to the database all at once. The database then needs to process this huge string and execute each statement. This requires the database do a lot of work parsing the statement, so is no always optimal. It does reduce the database access, so if the database is remote or poorly connected with the application, this can result in an improvement.</p> <p>In general parametrized batch writing is much more optimal, and on Oracle it provides a huge benefit, where as dynamic does not. JDBC defines the API for batch writing, but not all JDBC drivers support it, some support the API but then execute the statements one by one, so it is important to test that your database supports the optimization before using it. In EclipseLink batch writing is enabled using the persistence unit property "eclipselink.jdbc.batch-writing"="JDBC".</p> <p>Another important aspect of using batch writing is that you must have the same SQL (DML actually) statement being executed in a grouped fashion in a single transaction. Some JPA providers do not order their DML, so you can end up ping-ponging between two statements such as the order insert and the order-line insert, making batch writing in-effective. Fortunately EclipseLink orders and groups its DML, so usage of batch writing reduces the database access from 500 order inserts and 5000 order-line inserts to 55 (default batch size is 100). We could increase the batch size using "eclipselink.jdbc.batch-writing.size", so increasing the batch size to 1000 reduces the database accesses to 6 per page.</p> </blockquote>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload