Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>It's late enough that there are probably a number of slick reductions, but this works...</p> <pre> ineq={...}; pivotAt[set_, j_] := Select[set, And[ Not[FreeQ[#, x[u_] /; u &lt;= j]], FreeQ[#, x[u_] /; u > j] ] &] triangularize[set_] := Module[{left, i, new}, left = set; Reap[ For[i = 0, i &lt;= 21, i++, new = pivotAt[left, i]; Sow[new]; left = Complement[left, new]; ]][[2, 1]] ] Module[{ tri, workingIntervals, partials, increment, i }, tri = triangularize[ineq]; workingIntervals[set_] := set /. { t_ &lt;= c_ :> {t, Interval[{-\[Infinity], Max[c]}]}, t_ == c_ :> {t, Interval[{Min[c], Max[c]}]}, t_ >= c_ :> {t, Interval[{Max[c], \[Infinity]}]}}; partials = {}; increment[slice_] := Rule[#[[1, 1]], IntervalIntersection @@ #[[All, 2]]] &[ workingIntervals[slice /. partials ] ]; For[i = 1, i &lt;= Length[tri], i++, partials = Join[partials, {increment[tri[[i]]]}]; ]; partials ] </pre> <p>It's permissive in that correlations between variables ("this high means that low") are not accounted.</p> <p>-- EDIT --</p> <p>The result of the above is, of course</p> <pre> {x[0] -> Interval[{3, 3}], x[1] -> Interval[{1, 3}], x[2] -> Interval[{1, 3}], x[3] -> Interval[{1, 3}], x[4] -> Interval[{1, 3}], x[5] -> Interval[{1, 6}], x[6] -> Interval[{1, 6}], x[7] -> Interval[{1, 6}], x[8] -> Interval[{1, 6}], x[9] -> Interval[{1, 6}], x[10] -> Interval[{1, 6}], x[11] -> Interval[{1, 6}], x[12] -> Interval[{1, 6}], x[13] -> Interval[{1, 6}], x[14] -> Interval[{1, 10}], x[15] -> Interval[{1, 10}], x[16] -> Interval[{1, 10}], x[17] -> Interval[{1, 16}], x[18] -> Interval[{1, 16}], x[19] -> Interval[{1, 16}], x[20] -> Interval[{1, 16}], x[21] -> Interval[{1, 1}]} </pre>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload