Note that there are some explanatory texts on larger screens.

plurals
  1. POCan we use k-means clustering on this matrix
    text
    copied!<p>The following rows represent temperatures from -40 to 400 degrees and the 7 columns represent type of thermocouples(B,J,K....)</p> <p><strong>![temperature vs emf matrix][1]</strong></p> <pre><code>X=[ -1.961 -1.527 -0.194 -1.475 -1.023 -0.188 -2.255 -1.482 -1.156 -0.150 -1.121 -0.772 -0.145 -1.709 -0.995 -0.778 -0.103 -0.757 -0.518 -0.100 -1.152 -0.501 -0.392 -0.053 -.0383 -0.260 -0.051 -0.582 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.507 0.397 0.055 0.391 0.261 0.054 0.591 1.019 0.798 0.113 0.790 0.525 0.111 1.192 1.537 1.203 0.17 1.196 0.793 0.171 1.801 2.059 1.612 0.235 1.612 1.065 0.232 2.420 2.585 2.023 0.299 2.036 1.340 0.296 3.048 3.116 2.436 0.365 2.468 1.619 0.363 3.685 3.650 2.851 0.433 2.909 1.902 0.431 4.330 4.187 3.267 0.502 3.358 2.189 0.501 4.985 4.726 3.682 0.573 3.814 2.480 0.573 5.648 5.269 4.096 0.646 4.279 2.774 0.647 6.319 5.814 4.509 0.720 4.750 3.071 0.723 6.998 6.360 4.920 0.795 5.228 3.374 0.800 7.685 6.909 5.328 0.872 5.714 3.680 0.879 8.379 7.459 5.735 0.950 6.206 3.989 0.959 9.081 8.010 6.138 1.029 6.704 4.302 1.041 9.789 8.562 6.540 1.110 7.209 4.618 1.124 10.503 9.115 6.941 1.191 7.720 4.937 1.208 11.224 9.669 7.340 1.273 8.237 5.259 1.294 11.951 10.224 7.739 1.357 8.759 5.585 1.381 12.684 10.779 8.138 1.441 9.288 5.913 1.469 13.421 11.334 8.539 1.526 9.822 6.245 1.558 14.164 11.889 8.940 1.612 10.362 6.579 1.648 14.912 12.445 9.343 1.698 10.907 6.916 1.739 15.664 13.000 9.747 1.786 11.458 7.255 1.831 16.420 13.555 10.153 1.874 12.013 7.597 1.923 17.181 14.110 10.561 1.962 12.574 7.941 2.017 17.945 14.665 10.971 2.052 13.139 8.288 2.112 18.713 15.219 11.382 2.141 13.709 8.637 2.207 19.484 15.773 11.795 2.232 14.283 8.988 2.304 20.259 16.327 12.209 2.323 14.862 9.341 2.410 21.036 16.881 12.624 2.415 15.445 9.696 2.498 21.817 17.434 13.040 2.507 16.032 10.054 2.597 22.600 17.986 13.457 2.599 16.624 10.413 2.696 23.386 18.538 13.874 2.692 17.219 10.774 2.796 24.174 19.090 14.293 2.786 17.819 11.136 2.896 24.964 19.642 14.713 2.880 18.422 11.501 2.997 25.757 20.194 15.133 2.974 19.030 11.867 3.099 26.552 20.745 15.554 3.069 19.641 12.234 3.201 27.348 21.297 15.975 3.164 20.255 12.603 3.304 28.146 21.848 16.397 3.259 20.872 12.974 3.408 28.946]; </code></pre> <p><strong>My question is :</strong> Can we use clustering algorithms on such type of matrices when all the column contains the same entity at different states ?</p> <p>If not, then what could be the possible methods for identification?</p>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload