Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>I think you may want to look up how "tweakable block ciphers" work and have a look at how the problem of disc encryption is solved: <a href="http://en.wikipedia.org/wiki/Disk_encryption_theory" rel="nofollow noreferrer">Disk encryption theory</a>. Encrypting the whole disk is similar to your problem: encryption of each sector must be done independently (you want independent encryption of data at different offsets) and yet the whole thing must be secure. There is a lot of work done on that. Wikipedia seems to give a good overview. </p> <p>EDITED to add: Re your edit: Yes, you are trying to make a tweakable block cipher out of AES by XORing the tweak with the plaintext. More concretely, you have Enc(T,K,M) = AES (K, f(T) xor M) where AES(K,...) means AES encryption with the key K and f(T) is some function of the tweak (in your case I guess it's Fortuna). I had a brief look at the paper you mentioned and as far as I can see it's possible to show that this method does <em>not</em> produce a secure tweakable block cipher. The idea (based on definitions from section 2 of the Liskov, Rivest, Wagner paper) is as follows. We have access to either the encryption oracle or a random permutation and we want to tell which one we are interacting with. We can set the tweak T and the plaintext M and we get back the corresponding ciphertext but we don't know the key which is used. Here is how to figure out if we use the construction AES(K, f(T) xor M). Pick any two different values T, T', compute f(T), f(T'). Pick any message M and then compute the second message as M' = M xor f(T) xor f(T'). Now ask the encrypting oracle to encrypt M using tweak T and M' using tweak T'. If we deal with the considered construction, the outputs will be identical. If we deal with random permutations, the outputs will be almost certainly (with probability 1-2^-128) different. That is because both inputs to the AES encryptions will be the same, so the ciphertexts will be also identical. This would not be the case when we use random permutations, because the probability that the two outputs are identical is 2^-128. The bottom line is that xoring tweak to the input is probably not a secure method. </p> <p>The paper gives some examples of what they can prove to be a secure construction. The simplest one seems to be Enc(T,K,M) = AES(K, T xor AES(K, M)). You need two encryptions per block, but they prove the security of this construction. They also mention faster variants, but they require additional primitive (almost-xor-universal function families). </p>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload