Note that there are some explanatory texts on larger screens.

plurals
  1. PO
    text
    copied!<p>You can use the <a href="http://snap.stanford.edu/" rel="nofollow">SNAP network analysis library</a>, which implements the Tomita et al. 2006 algorithm. All other theoretically-fast algorithms have been shown to be significantly slower than Tomita et al. in practice, for sparse graphs at least (Eppstein et al. 2010).</p> <p>If that algorithm requires too much memory for a large graph, you can try the linear-space algorithm of Eppstein et al. 2010/2011.</p> <ul> <li><p>Tomita, E.; Tanaka, A. &amp; Takahashi, H. The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 2006, 363, 28 - 42. <a href="http://dx.doi.org/10.1016/j.tcs.2006.06.015" rel="nofollow">DOI:10.1016/j.tcs.2006.06.015</a></p></li> <li><p>Eppstein, D.; Löffler, M. &amp; Strash, D. Cheong, O. Listing all maximal cliques in sparse graphs in near-optimal time. ISAAC '10: Proc. 21st International Symposium on Algorithms and Computation, Springer Berlin / Heidelberg, 2010, 6506, 403-414. <a href="http://dx.doi.org/10.1007/978-3-642-17517-6_36" rel="nofollow">DOI:10.1007/978-3-642-17517-6_36</a></p></li> <li><p>Eppstein, D. &amp; Strash, D. Listing all maximal cliques in large sparse real-world graphs. SEA '11: Proc. 10th International Symposium on Experimental Algorithms, Springer Berlin / Heidelberg, 2011, 6630, 364-375. <a href="http://dx.doi.org/10.1007/978-3-642-20662-7_31" rel="nofollow">DOI:10.1007/978-3-642-20662-7_31</a></p></li> </ul>
 

Querying!

 
Guidance

SQuiL has stopped working due to an internal error.

If you are curious you may find further information in the browser console, which is accessible through the devtools (F12).

Reload